
reduced by introducing polymer additives. These additives can be chosen so as to decrease 
at the same time the heat transferred from the mud. 

NOTATION 

Here, x and t are the spatial coordinate and thetime; Xm(t) , Xs(t) are the coordinates 
of the erosion and thaw fronts; Xa(t) is the coordinate of the ablation front in the standard 
formulation; T i is the initial temperature of the porous medium; T s is the melting point of 
the interstitial ice; T m is the temperature of the soil framework, corresponding to a fixed 
degree of saturation with water Om; o(x, t) is the degree of saturation of the pore space 
between x m and x s with water; o m = o(x m, t), %w, hi, %fw are the thermal conductivity of ice, 
water, and the soil framework; (cP)i, (Cp)w, (cP)fw are the corresponding volume heat capaci- 
ties; Pi is the density of ice; L is the specific heat of melting of ice; and, m is t~e 
porosity of the soil. 
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SOLUTION OF THE HEAT CONDUCTION PROBLEM FOR LAMINAR ORTHOTROPIC 

SLABS IN A SPATIAL FORMULATION 

V. S. Sipetov, Sh. Sh. Tuimetov, 
and O. N. Demchuk 

UDC 5 ; ; 6 . 2 4  

A solution is obtained for the stationary heat conduction problem in a spatial 
formulation for rectangular slabs with an arbitrary quantity of orthotropic 
layers. 

A survey of investigations in the area of the analysis of laminar slabs under thermal 
actions showed that there are no solutions in a three-dimensional formulation for slabs 
with anisotropic (orthotropic) layers. 

A laminar slab in a stationary temperature field is examined in this paper. The slab 
is referred to a rectangular xz,x2,x 3 coordinate system. The problem is solved by the ~on- 
jugatuion method [i]. Zero temperature is maintained on the slab side surfaces, i.e., ,ge 
have T = 0 for x I = 0, al and x= = 0, a2. The following boundary conditions [2] are possible 
on the slab face surfaces (x s = b(s s = 0, n): 

i) First kind 

T(xi, b (~ = [(0 ~ ) ,  1 = 0, Iz; i = 1, 2; 1)  

2) Second kind 

~(3~T,3 (xz, b (~ = q(o) (xl); k(f ~ T,o (xz, l /~ )  = q(~ (xi); c2) 
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TABLE i. Comparison of the Results of a Computation 
for a Sandwich Slab for Boundary Conditions of the 
First Kind 

4 
3 
2 
1 
0 

--1 
--2 
--3 
--4 

proposed 

80,00 
58,23 
42,5t 
3l ,21 
23, I5 
17,50 
13,66 
11,25 
lO,O0 

a,'h:=5 

[31 

80,00 
60,20 
45,99 
35,64 
27,89 
2,1,8t 
16,89 
12,90 
10,00 

proposed 

80,00 
66,96 
55,66 
45,78 
37,09 
29,36 
22,38 
15,99 
10,00 

a,'h = 10 

[3] 

80,00 
67, ll 
55,92 
46, 16 
37,51 
29,75 
22,68 
16,14 
10,00 

TABLE 2. Comparison of the Results of a Computation for a 
Sandwich Slab for Different Boundary Conditions on the Face 
Surfaces 

~'=10x3,h 

5 
4 
2 
0 

~2  
--4 
--5 

Boundary conditions on the face surfaces 
(12) (13) (I4) 

)reposed 

50,00 
48,84 
33,11 
23,22 
17,42 
14,69 
15,00 

[-t I 

50,00 
48,90 
32.13 
21,83 
16,53 
14,75 
15,00 

proposed 

66,77 
65,20 
41,10 
24,26 
1 t ,69 
1,181 
t, 156 

[4] 

66,76 
65,26 
40,03 
22,81 
I0 ,80  
1,236 
1,146 

proposed 

48,91 
47,77 
32,25 
22,41 
16,52 
13,55 
13,83 

[41 

48,91 
47,83 
31,30 
21,07 
15,67 
13,61 
13,83 

3) Third kind 

~.~1)T,3 (x~, b (~ = ~(o) (T(0) (xi) ~- T (xi, b(~ ( 3 )  

~(n)~r ~(n) 
3 ",3 (xi, b (m) = (T~ ~) (xi) q- T (xi, b(m)). 

D i f f e r e n t i a t i o n  i s  d e n o t e d  by  t h e  common i n  t h e  s u b s c r i p t s  i n  ( 1 ) - ( 3 )  and  l a t e r ,  t h e  
given functions allow of expansion in double trigonometric Fourier series, and ideal thermal 
contact conditions are assured between the layers (boundary condition of the fourth kind): 

T ("-l) (xi, b (~-~)) = T (k) (x,, br ( 4 )  

~ (h--1),-r,(~--l). b(h-~)) k(h)T (k) 3 ~ , 3  (x~, = 3 ,3 (x~, b ( h - l ) ) .  

It is assured that the temperature field in the slab satisfied the stationary heat 
conduction equation (no internal heat sources) [2] 

~1T,11 "~ ~,~,T,22 "-~ k3T,33 = 0. ( 5 )  

The desired temperature distribution over the domain of the k-th layer of the slab 
thickness h (k) is represented in the form of the double trigonometric Fourier series 

T(x~, x3)- -  ~ ~ T*(x3) sin(o~x,)sin(~x,,), ( 6 )  

where 

Here ~ = m1~/al; ~ = mz~/a2; 
quantity. 

Representation of the temperature in the form (6) permits satisfying the boundary 
conditions on the slab side surfaces that are maintained at the zero temperature. 

Substitution of (6) into (5) results in an equation of the form 

T* (xa) = F exp (9x3). ( 7 )  

p = ~ / h ( k ) ;  F a r e  d e s i r e d  c o e f f i c i e n t s  and  T i s  a d e s i r e d  

(8) 
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Roots of the characteristic equation 

= ~ I / ( k ~  ~ + k~)!k~ (9)  

follow from (8), and therefore, y = h(k)p/~. 

Let us note that the quantity p is a real number since all the components in (9) are 
positive numbers. 

Let us represent the expansion of the temperature over the layer thickness in the form 

T* ~a) = F1; sh f q- F1J s h f q- F,a ch f q- Fl~f ch }, (10) 

where f = X~xa/h(k). 

Let us note that the heat conduction equation (5) is valid for any point within the 
slab. Substitution of (i0) into (5) results in F12 = F14 = O. And, finally, within each 
layer the temperature over the thickness is described by the law 

T* (xa) = Fu sh f .q- F~a ch f. ( 11 ) 

The e x p a n s i o n  (11) i n c l u d e s  two d e s i r e d  c o e f f i c i e n t s  F l l  and Fla  f o r  each  l a y e r .  We 
have 2n c o e f f i c i e n t s  f o r  a s l a b  o f  n l a y e r s .  

To d e t e r m i n e  them we must s a t i s f y  two boundary  c o n d i t i o n s  on t h e  f a c e  s u r f a c e s :  (1 ) ,  
( 2 ) ,  (3) and 2(n - 1) c o n d i t i o n s  o f  i d e a l  t h e r m a l  c o n t a c t  on t h e  l a y e r  i n t e r f a c i a l  s u r f a c e s  
(4 ) .  We f i n a l l y  o b t a i n  2 + 2(n  - 1) = 2n r e q u i r e d  e q u a t i o n s .  The a l g e b r a i c  e q u a t i o n s  ob- 
t a i n e d  are linearly independent since the expansion functions are nonlinear over the tilick- 
ness. The solution of the system of 2n linear algebraic equations permits finding the de- 
sired expansion coefficients F1z and Fza for each layer and describing the temperature dis- 
tribution over the slab thickness at an arbitrary point with the coordinates xl,x 2. 

The algorithm of the solution of the spatial heat conduction problem for the class 
of problems considered is realized in the form of a program packet for the ES electron:~c 
computer. 

We make certain comparisons with other solutions to give a foundation for the reliability 
of the solution constructed. 

Eample i. Let us examine a square sandwich slab (a I = a 2 = a) on whose face surfaces 
the temperature distribution 

T (xi, b (0) : Tl sin (~xl) sin ( ~ ) ,  (12) 

is given where a = ~/a; T O = I0 degrees and T n = 80 degrees. The heat conduction coef- 
ficients of the layer materials are the following 

(L~h), %~h), %~))= (14,6; 0,93; 0,93) W/(m.deg) (~ = 1, 3); 

(%12), %~2), %~) ) :  (0,93; 14,6; 0,93) W/(m.deg). 

The layer thicknesses are h (k) = (0.25, 0.5, 0.25)h, where h is the total thickness of the 
slab. The results of a computation obtained on the basis of the proposed approach and ~sing 
the modified alternate-triangle method [3] are represented in Table I. 

Example 2. A square (a x a) sandwich slab on whose face surfaces are given the t~n- 
perature distribution (12) and the thermal flux intensity 

qU) (x~) = ~ sin (~xl) sin (~x~), 13 ) 

as well as the environment temperature 

T~ 0 &i) -: ~ a  sin (~x,) sin (exe), 14) 

where a = ~/a; qn = 30 W/m2; qo = O; ~iO)= 15 degree; ~n) = 50 degree; s = O, n. The heat 
elimination coefficients are (~(0), ~Cfi!) = (5; 20) W/m2.deg). The heat conduction coef- 
ficients of the layer materials are (At(k), 12(k), 13(k)) = (i0; I; i) W/(m.deg); hp(2)= 
I0- Xp( )(k = i, 3; p = i, 2, 3). The thickness of the layers are h (k) = (0.i, 0.8, O.1)h, 
where h = 1 m is the total slab thickness. The computation is carried out for a/h = 5. 
Results of solving these problems, obtained on the basis of the proposed approach and by 
using a refined model based on application of a nonlinear temperature distribution law 
[4] are presented in Table 2. 
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The approach developed to the solution of heat conduction problem in a three-dimen- 
sional formulation is "exact" to a definite extent, the error is due just to the numerical 
realization. Results obtained on its basis can be test data for the foundation of the re- 
liability of different approximate models applied in the computation of laminar orthotropic 
slabs under thermal action. 

NOTATION 

%j (j = I, 2, 3) and heat conduction coefficients of an orthotropic body; T(x~, b(s 
are temperatures on the slab face surfaces; q is the heat flux; ~[s is the heat elimina- 
tion coefficient; T(~) is the environment function, and s = 0, n. 
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MATHEMATICAL MODELING OF THE PROCESS OF PLANE POLYMER FILM FORMATION 

A. V. Baranov, O. Kh. Dakhin, 
A. V. Lyapkov, and N. V. Tyabin 

UDC 536.24.02 

The approximate solution is considered of a nonlinear nostationary problem of 
heat conduction with conjugate boundary conditions. 

A number of papers [i, 2] that take account most completely of the factors exerting 
substantial influence on the progress of a process is devoted to the mathematical modeling 
of polymer film and fiber formation. However, the assumptions made therein do not permit 
description of the film formation on cooling rollers with the accuracy needed for practical 
purposes. The problem is solved for boundary conditions of the third kind in all the papers 
mentioned, including in [1-3] for symmetric boundary conditions. This does not correspond 
to the actual technological process since cooling from the rollers is considerably more 
intense than from the air. Moreover, the assumption about boundary conditions of the third 
kind for the heat transmission through the roller wall does not permit taking account of 
the nonlinearity of the temperature profile therein during heating, which results in sub- 
stantial errors in the initial cooling period. In this case conjugate heat transfer condi- 
tions assuming the interdependence of the film and roller wall temperature fields must be 
given on the film-roller boundary. The dependence of the thermophysical properties on the 
degree of crystallinity is not taken into account in [i] and on the temperature in [2, 3]. 
Utilization of finite-difference methods [I-3] can cause significant difficulties in the 
practice of engineering optimization computations. 

The problem of heat transfer and nonisothermal crystallization of polymer films on 
a cooling roller system is solved in this paper by linearization and use of the Foureri, 
Galerkin-Kantorovich, and Kutta-Merson methods. A number of assumptions is made is the 
construction of the mathematical model of the process. A one-dimensional problem is con- 
sidered since the roller diameter and film width exceed its thickness significantly. The 
initial temperature of the polymer melt is constant and homogeneous, and the initial roller 
wall temperature are constant and equal to the cooling fluid temperatures. The polymer 
>~hermophysical properties are described by using a two-phase model and depend linearly on 
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